If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+55t-2.8=0
a = -4.9; b = 55; c = -2.8;
Δ = b2-4ac
Δ = 552-4·(-4.9)·(-2.8)
Δ = 2970.12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-\sqrt{2970.12}}{2*-4.9}=\frac{-55-\sqrt{2970.12}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+\sqrt{2970.12}}{2*-4.9}=\frac{-55+\sqrt{2970.12}}{-9.8} $
| 7-9x-2=-60+6x-10 | | 40=2(w+8)+2w | | 16y^2-32y+7=0 | | 21x^2=16x+3 | | |2w-2|+9=19 | | A=10x+24 | | 27^(2x-5)=9^4x | | 7x^2+35x+14=0 | | (-3/4+k)*2+5/4=1/4 | | 0.40x+0.06930)=9.8 | | 12x-7=5+18x | | 16(×-1)=12x+36 | | -4/3h=5 | | 6d+2*d-13)=d*5-5 | | A+7+b=66 | | 3,5*(x+1)=10,5 | | 1.5x=4.05 | | 1/3x+5=2/5 | | 7-9x-4=-15+7x-14 | | 8+0.5x=2,5x | | 8x^2+5x-28=0 | | 2.6x=7.28 | | Y=4x^2+14x-8 | | 3x+14=3+6x-7 | | 5(2y-4)=9(y+4) | | 0=5x+6125^-2 | | 9x-16=2x+6x | | 2h–8=h+17 | | 5x+-8+43=90 | | a+(5+3a)=2a | | X+(3x+13)=105 | | 5x+-8+43=180 |